Symmetry in abstract elementary classes with amalgamation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symmetry in abstract elementary classes with amalgamation

This paper is part of a program initiated by Saharon Shelah to extend the model theory of first order logic to the nonelementary setting of abstract elementary classes (AECs). An abstract elementary class is a semantic generalization of the class of models of a complete first order theory with the elementary substructure relation. We examine the symmetry property of splitting (previously isolat...

متن کامل

Saturation and solvability in abstract elementary classes with amalgamation

Theorem 0.1. Let K be an abstract elementary class (AEC) with amalgamation and no maximal models. Let λ > LS(K). If K is categorical in λ, then the model of cardinality λ is Galois-saturated. This answers a question asked independently by Baldwin and Shelah. We deduce several corollaries: K has a unique limit model in each cardinal below λ, (when λ is big-enough) K is weakly tame below λ, and t...

متن کامل

On the Structure of Categorical Abstract Elementary Classes with Amalgamation

For K an abstract elementary class with amalgamation and no maximal models, we show that categoricity in a highenough cardinal implies structural properties such as the uniqueness of limit models and the existence of good frames. This improves several classical results of Shelah. Theorem 0.1. Let μ ≥ LS(K). If K is categorical in a λ ≥ i(2μ)+ , then: (1) Whenever M0,M1,M2 ∈ Kμ are such that M1 ...

متن کامل

Uncountable categoricity of local abstract elementary classes with amalgamation

We give a complete and elementary proof of the following upward categoricity theorem: LetK be a local abstract elementary class with amalgamation and joint embedding, arbitrarily large models, and countable LöwenheimSkolem number. If K is categorical in א1 then K is categorical in every uncountable cardinal. In particular, this provides a new proof of the upward part of Morley’s theorem in firs...

متن کامل

Categoricity for Abstract Classes with Amalgamation Sh394

Let K be an abstract elementary class with amalgamation, and Lowenheim Skolem number LS(K). We prove that for a suitable Hanf number χ0 if χ0 < λ0 ≤ λ1, and K is categorical in λ + 1 then it is categorical in λ0. 2000 Mathematics Subject Classification. 03C45, 03C75.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Archive for Mathematical Logic

سال: 2017

ISSN: 0933-5846,1432-0665

DOI: 10.1007/s00153-017-0533-z